Insufficient image spatial resolution is a serious limitation in many practical scenarios, especially when acquiring images at a finer scale is infeasible or brings higher costs. This is inherent to remote sensing, including Sentinel-2 satellite images that are available free of charge at a high revisit frequency, but whose spatial resolution is limited to 10 m ground sampling distance. The resolution can be increased with super-resolution algorithms, in particular when performed from multiple images captured at subsequent revisits of a satellite, taking advantage of information fusion that leads to enhanced reconstruction accuracy. One of the obstacles in multi-image super-resolution consists in the scarcity of real-world benchmarks - commonly, simulated data are exploited which do not fully reflect the operating conditions. In this paper, we introduce a new MuS2 benchmark for super-resolving multiple Sentinel-2 images, with WorldView-2 imagery used as the high-resolution reference. Within MuS2, we publish the first end-to-end evaluation procedure for this problem which we expect to help the researchers in advancing the state of the art in multi-image super-resolution.
translated by 谷歌翻译
在分析此类数据中,高光谱脉冲仍然是最具挑战性的任务之一。深度学习一直在田野上盛开,并被证明超过了其他经典的不混合技术,并且可以有效地部署在配备高光谱成像器的地球观察卫星上。在这封信中,我们遵循这一研究途径,并提出了一个多分支卷积神经网络,该网络受益于融合过程中的光谱,空间和光谱空间特征。我们的实验结果得到了消融研究的支持,表明我们的技术从文献中优于其他人,而导致了更高质量的分数丰度估计。此外,我们研究了减少训练集对所有算法及其对噪音的稳健性的影响的影响,因为捕获大型且代表性的地面真相集是耗时且在实践中成本高昂的,尤其是在新兴的地球观察方案中。
translated by 谷歌翻译
通过优化农业管理实践来维持农场的可持续性有助于建立更适合星球的环境。新兴的卫星任务可以获取多光谱图像,从而捕获有关扫描区域的更详细的光谱信息,因此,在农业应用中的分析过程中,我们可以从细微的光谱特征中受益。我们介绍了一种从10 m Sentinel-2多光谱图像系列中提取2.5 m栽培地图的方法,该图像受益于紧凑型卷积神经网络。实验表明,与U-NET相比,我们的模型不仅通过提供更高质量的分割图来超过经典和深度的机器学习技术,而且还可以大大减少内存足迹(我们的模型的几乎可训练的参数,最多具有31m参数的参数U-nets)。在任务中,这种记忆节俭是关键的,这使我们能够在轨道进入轨道后将模型链接到AI驱动的卫星,因为由于时间限制,不可能发送大型网。
translated by 谷歌翻译
Deep neural networks (DNN) have outstanding performance in various applications. Despite numerous efforts of the research community, out-of-distribution (OOD) samples remain significant limitation of DNN classifiers. The ability to identify previously unseen inputs as novel is crucial in safety-critical applications such as self-driving cars, unmanned aerial vehicles and robots. Existing approaches to detect OOD samples treat a DNN as a black box and assess the confidence score of the output predictions. Unfortunately, this method frequently fails, because DNN are not trained to reduce their confidence for OOD inputs. In this work, we introduce a novel method for OOD detection. Our method is motivated by theoretical analysis of neuron activation patterns (NAP) in ReLU based architectures. The proposed method does not introduce high computational workload due to the binary representation of the activation patterns extracted from convolutional layers. The extensive empirical evaluation proves its high performance on various DNN architectures and seven image datasets. ion.
translated by 谷歌翻译
Imperfect information games (IIG) are games in which each player only partially observes the current game state. We study how to learn $\epsilon$-optimal strategies in a zero-sum IIG through self-play with trajectory feedback. We give a problem-independent lower bound $\mathcal{O}(H(A_{\mathcal{X}}+B_{\mathcal{Y}})/\epsilon^2)$ on the required number of realizations to learn these strategies with high probability, where $H$ is the length of the game, $A_{\mathcal{X}}$ and $B_{\mathcal{Y}}$ are the total number of actions for the two players. We also propose two Follow the Regularize leader (FTRL) algorithms for this setting: Balanced-FTRL which matches this lower bound, but requires the knowledge of the information set structure beforehand to define the regularization; and Adaptive-FTRL which needs $\mathcal{O}(H^2(A_{\mathcal{X}}+B_{\mathcal{Y}})/\epsilon^2)$ plays without this requirement by progressively adapting the regularization to the observations.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
We present the Verifee Dataset: a novel dataset of news articles with fine-grained trustworthiness annotations. We develop a detailed methodology that assesses the texts based on their parameters encompassing editorial transparency, journalist conventions, and objective reporting while penalizing manipulative techniques. We bring aboard a diverse set of researchers from social, media, and computer sciences to overcome barriers and limited framing of this interdisciplinary problem. We collect over $10,000$ unique articles from almost $60$ Czech online news sources. These are categorized into one of the $4$ classes across the credibility spectrum we propose, raging from entirely trustworthy articles all the way to the manipulative ones. We produce detailed statistics and study trends emerging throughout the set. Lastly, we fine-tune multiple popular sequence-to-sequence language models using our dataset on the trustworthiness classification task and report the best testing F-1 score of $0.52$. We open-source the dataset, annotation methodology, and annotators' instructions in full length at https://verifee.ai/research to enable easy build-up work. We believe similar methods can help prevent disinformation and educate in the realm of media literacy.
translated by 谷歌翻译
Artificial intelligence (AI) technologies revolutionize vast fields of society. Humans using these systems are likely to expect them to work in a potentially hyperrational manner. However, in this study, we show that some AI systems, namely large language models (LLMs), exhibit behavior that strikingly resembles human-like intuition - and the many cognitive errors that come with them. We use a state-of-the-art LLM, namely the latest iteration of OpenAI's Generative Pre-trained Transformer (GPT-3.5), and probe it with the Cognitive Reflection Test (CRT) as well as semantic illusions that were originally designed to investigate intuitive decision-making in humans. Our results show that GPT-3.5 systematically exhibits "machine intuition," meaning that it produces incorrect responses that are surprisingly equal to how humans respond to the CRT as well as to semantic illusions. We investigate several approaches to test how sturdy GPT-3.5's inclination for intuitive-like decision-making is. Our study demonstrates that investigating LLMs with methods from cognitive science has the potential to reveal emergent traits and adjust expectations regarding their machine behavior.
translated by 谷歌翻译
Searching for a path between two nodes in a graph is one of the most well-studied and fundamental problems in computer science. In numerous domains such as robotics, AI, or biology, practitioners develop search heuristics to accelerate their pathfinding algorithms. However, it is a laborious and complex process to hand-design heuristics based on the problem and the structure of a given use case. Here we present PHIL (Path Heuristic with Imitation Learning), a novel neural architecture and a training algorithm for discovering graph search and navigation heuristics from data by leveraging recent advances in imitation learning and graph representation learning. At training time, we aggregate datasets of search trajectories and ground-truth shortest path distances, which we use to train a specialized graph neural network-based heuristic function using backpropagation through steps of the pathfinding process. Our heuristic function learns graph embeddings useful for inferring node distances, runs in constant time independent of graph sizes, and can be easily incorporated in an algorithm such as A* at test time. Experiments show that PHIL reduces the number of explored nodes compared to state-of-the-art methods on benchmark datasets by 58.5\% on average, can be directly applied in diverse graphs ranging from biological networks to road networks, and allows for fast planning in time-critical robotics domains.
translated by 谷歌翻译
Human behavior understanding requires looking at minute details in the large context of a scene containing multiple input modalities. It is necessary as it allows the design of more human-like machines. While transformer approaches have shown great improvements, they face multiple challenges such as lack of data or background noise. To tackle these, we introduce the Forced Attention (FAt) Transformer which utilize forced attention with a modified backbone for input encoding and a use of additional inputs. In addition to improving the performance on different tasks and inputs, the modification requires less time and memory resources. We provide a model for a generalised feature extraction for tasks concerning social signals and behavior analysis. Our focus is on understanding behavior in videos where people are interacting with each other or talking into the camera which simulates the first person point of view in social interaction. FAt Transformers are applied to two downstream tasks: personality recognition and body language recognition. We achieve state-of-the-art results for Udiva v0.5, First Impressions v2 and MPII Group Interaction datasets. We further provide an extensive ablation study of the proposed architecture.
translated by 谷歌翻译